Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(11): 1561, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945825
2.
Nat Cell Biol ; 25(9): 1240, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37696950
3.
Nat Cell Biol ; 25(4): 515, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37059880
5.
Nat Cell Biol ; 24(10): 1448, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36202976
7.
Nat Cell Biol ; 24(7): 1009, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35821081
8.
Nat Cell Biol ; 24(5): 601, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35562483
9.
Nat Cell Biol ; 24(3): 281, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35292779
10.
Nat Cell Biol ; 24(1): 1, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027736
11.
F1000Res ; 62017.
Artigo em Inglês | MEDLINE | ID: mdl-28781746

RESUMO

The bacterial pathogen Listeria monocytogenes ( Lm) is the causative agent of listeriosis, a rare but fatal foodborne disease. During infection, Lm can traverse several host barriers and enter the cytosol of a variety of cell types. Thus, consideration of the extracellular and intracellular niches of Lm is critical for understanding the infection process. Here, we review advances in our understanding of Lm infection and highlight how the interactions between the host and the pathogen are context dependent. We discuss discoveries of how Lm senses entry into the host cell cytosol. We present findings concerning how the nature of the various cytoskeleton components subverted by Lm changes depending on both the stage of infection and the subcellular context. We present discoveries of critical components required for Lm traversal of physiological barriers. Interactions between the host gut microbiota and Lm will be briefly discussed. Finally, the importance of Lm biodiversity and post-genomics approaches as a promising way to discover novel virulence factors will be highlighted.

12.
Development ; 140(23): 4719-29, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24173807

RESUMO

Cell shape changes drive tissue morphogenesis during animal development. An important example is the apical cell constriction that initiates tissue internalisation. Apical constriction can occur through a phase of cyclic assembly and disassembly of apicomedial actomyosin networks, followed by stabilisation of these networks. Delayed negative-feedback mechanisms typically underlie cyclic behaviour, but the mechanisms regulating cyclic actomyosin networks remain obscure, as do mechanisms that transform overall network behaviour. Here, we show that a known inhibitor of apicomedial actomyosin networks in Drosophila amnioserosa cells, the Par-6-aPKC complex, is recruited to the apicomedial domain by actomyosin networks during dorsal closure of the embryo. This finding establishes an actomyosin-aPKC negative-feedback loop in the system. Additionally, we find that aPKC recruits Bazooka to the apicomedial domain, and phosphorylates Bazooka for a dynamic interaction. Remarkably, stabilising aPKC-Bazooka interactions can inhibit the antagonism of actomyosin by aPKC, suggesting that Bazooka acts as an aPKC inhibitor, and providing a possible mechanism for delaying the actomyosin-aPKC negative-feedback loop. Our data also implicate an increasing degree of Par-6-aPKC-Bazooka interactions as dorsal closure progresses, potentially explaining a developmental transition in actomyosin behaviour from cyclic to persistent networks. This later impact of aPKC inhibition is supported by mathematical modelling of the system. Overall, this work illustrates how shifting chemical signals can tune actomyosin network behaviour during development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Quinase C/metabolismo , Actomiosina/antagonistas & inibidores , Actomiosina/metabolismo , Animais , Polaridade Celular , Forma Celular , Embrião não Mamífero/metabolismo , Morfogênese , Fosforilação , Proteína Quinase C/antagonistas & inibidores
13.
Methods Mol Biol ; 839: 1-17, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22218888

RESUMO

Live imaging is critical for understanding the structure and activities of protein interaction networks in cells. By tagging proteins of interest with fluorescent proteins, such as green fluorescent protein (GFP), their localization in cells can be determined and correlated with cellular activities. This can be extended into developmental systems such as Drosophila to understand the molecular and cellular bases of development. In this chapter, we review sample preparation techniques and basic imaging considerations for Drosophila embryos. We then discuss how these techniques can be extended to count absolute protein numbers at specific subcellular locations, and determine their dynamics using fluorescence recovery after photobleaching (FRAP). These techniques can help reveal the structure and dynamics of protein complexes in live cells.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Espaço Intracelular/metabolismo , Imagem Molecular/métodos , Animais , Recuperação de Fluorescência Após Fotodegradação , Membranas Artificiais , Permeabilidade , Transporte Proteico
14.
Development ; 137(10): 1645-55, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20392741

RESUMO

Apical constriction is a major mechanism underlying tissue internalization during development. This cell constriction typically requires actomyosin contractility. Thus, understanding apical constriction requires characterization of the mechanics and regulation of actomyosin assemblies. We have analyzed the relationship between myosin and the polarity regulators Par-6, aPKC and Bazooka (Par-3) (the PAR complex) during amnioserosa apical constriction at Drosophila dorsal closure. The PAR complex and myosin accumulate at the apical surface domain of amnioserosa cells at dorsal closure, the PAR complex forming a patch of puncta and myosin forming an associated network. Genetic interactions indicate that the PAR complex supports myosin activity during dorsal closure, as well as during other steps of embryogenesis. We find that actomyosin contractility in amnioserosa cells is based on the repeated assembly and disassembly of apical actomyosin networks, with each assembly event driving constriction of the apical domain. As the networks assemble they translocate across the apical patch of PAR proteins, which persist at the apical domain. Through loss- and gain-of-function studies, we find that different PAR complex components regulate distinct phases of the actomyosin assembly/disassembly cycle: Bazooka promotes the duration of actomyosin pulses and Par-6/aPKC promotes the lull time between pulses. These results identify the mechanics of actomyosin contractility that drive amnioserosa apical constriction and how specific steps of the contractile mechanism are regulated by the PAR complex.


Assuntos
Actomiosina/fisiologia , Padronização Corporal/fisiologia , Drosophila/embriologia , Complexos Multiproteicos/fisiologia , Actinas/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Movimento Celular/genética , Movimento Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Corrente Citoplasmática/fisiologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Embrião não Mamífero , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica/fisiologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteína Quinase C/fisiologia , Multimerização Proteica/genética , Multimerização Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...